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Abstract. Quantum radiation from a moving dielectric semi-infinite half-space is investigated
in a scalar model in two, three, and arbitrary integer spatial dimensions. The dielectric medium
is non-dispersive and non-absorbing. The Hamiltonian describing the field in the presence of
the moving dielectric body is obtained from considerations of Lorentz invariance. The field is
quantized by an expansion into photon eigenmodes that are composed of incoming, reflected, and
transmitted plane waves. The treatment includes total internal reflection and evanescent modes
which are specific to dimensionsd > 2. The Schr̈odinger equation for the state of the field is
solved to first order in the velocity of the dielectric by a generalized adiabatic approximation.
Non-uniform motion is found to lead to the emission of photon pairs whose spectrum and
angular distribution are analysed in detail. The radiated energy and the radiation-reaction force
are studied with particular emphasis to their dependence on the dimension of the system. In
addition, the energy is worked out for several test trajectories.

1. Introduction

1.1. State of the art and motivation

Although the fact that moving mirrors radiate has been known for more than 20 years [1],
and the effect has long since found its way into textbooks [2] as the Unruh effect, the
underlying physical mechanism is still viewed by many as somewhat mysterious, largely
because most investigations have been done for highly idealized models. Almost all previous
workers‡ have made the sometimes convenient but necessarily unphysical assumption of
perfect reflectivity of the mirror which then leads to the mathematically challenging problem
of finding solutions to the wave equation with time-dependent boundary conditions. Albeit
difficult, finding such solutions is not impossible. In a pioneering paper Moore [3] showed
that exact solutions can be found for the wave equation in one (spatial) dimension. However,
it has meanwhile been recognized [4] that for arbitrary motions this is possible only in
one dimension because only the one-dimensional wave equation remains invariant under
conformal transformations once boundary conditions have been imposed.

The restriction to perfect reflectivity of the mirror has been overcome by a few workers.
One approach [5] is to describe an imperfect mirror by defining its properties of reflectivity

† Author to whom all correspondence should be addressed. Present address: University of Sussex, CPES, Physics
Group, Falmer, Brighton BN1 9QH, UK.
‡ Here we dispense with a complete bibliography of works on radiation by moving perfect mirrors, as there exists
a vast number. A skeleton of essential references can be found in [6].
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and transmittivity and to consider the scattering of photons from this mirror; this amounts
to dealing with linear response theory which is valid for small displacements of the mirror.
Another possibility is to construct an electromagnetic field theory in the presence of a non-
dispersive dielectric medium, which has been done both for a one-dimensional scalar model
[6] and for the three-dimensional electromagnetic field [8]. The latter approach has the
unique advantage that it gives full information on the state of the photon field and hence
the spectrum of the emitted photons. In a recent paper Barton and North [9] proceed from
this concept for calculating the radiated energy from an harmonically oscillating dielectric
half-space interacting with a scalar quantum field in three dimensions. This paper uses the
same approach but solves a more general problem. Here we consider a scalar field in two
and three dimensions and even in arbitrarily many dimensionsd > 1. The primary aim
of this is to show that two- and more dimensional fields interacting with moving mirrors
exhibit a qualitatively different behaviour from one-dimensional models. The basic reason
for this is that imperfect reflection in more than one dimension always comprises total
internal reflection and therefore evanescent field modes, and these lead to qualitatively new
features of the system. Furthermore, unlike Barton and North we do not restrict ourselves
to purely oscillatory motions, but instead consider arbitrary non-relativistic motions normal
to the reflecting surface and starting from rest. This gives important new information on
the dependence of the dissipative force acting on the moving mirror on the dimensionality
d of the system and, in particular, shows that there is a significant difference between even
and odd dimensions caused by a different behaviour under time-reversal. In addition, we
are able to examine the radiated energy from a moving mirror in arbitrary dimensions and
come to the surprising conclusion that for dimensions greater than three the radiated energy
diverges in the perfect-reflector limit, which points to a fundamental flaw in the physics of
any models considering moving perfect mirrors in more than three dimensions. Moreover,
we are presenting this analysis with the intention of illustrating the precise mechanism of
the radiation. We are for the first time able to show exactly how much radiation is going
where and how this depends on the refractivity of the medium. Finally, the examination of
a variety of qualitatively different examples for possible trajectories of the mirror puts us
in the position to make some general assertions on the dependence of the emitted radiation
on the motion of a perfectly or imperfectly reflecting mirror.

1.2. Outline

After we have, in the remainder of this section, given a precise definition of the model
we investigate in this paper and of the notation we use, we establish a canonical field
theory of a quantized scalar field in the presence of a dielectric half-space in section 2. In
section 3 we solve the time-dependent Schrödinger equation for the state of the field in a
suitably adapted version of the standard adiabatic approximation. We work to first order
in the velocity of the dielectric body, i.e. we adopt a non-relativistic approximation. Once
we have determined the time evolution of the state vector of the field, we investigate in
section 4 the spectral distribution of the quantum radiation that is produced by the motion of
the dielectric. In section 5 we calculate the total radiated energy and the radiation-reaction
force on the dielectric body and investigate the effects of the dimensionality of the system
on these quantities. The paper closes with a brief summary of the results in section 6.
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1.3. The model

The object of this paper is the investigation of the interaction of a quantized massless scalar
field in its ground state with a non-relativistically moving dielectric half-space. Although
this work is mainly concerned with fields in two and three spatial dimensions, we formulate
the theory for an arbitrary number of spatial dimensionsd. Hence all mathematical notations
that depend on the spatial dimension, e.g. the position vectorr = (x1, x2, . . . , xd) or volume
integrals

∫
ddr ≡ ∫ dr, are to be interpreted accordingly. Even though we have no direct

physical interpretation of systems with spatial dimensions greater than three, the generality
of our approach is justified by providing a deeper insight into the dependence of the radiation
effects studied here on the spatial dimensionality of the system.

The restriction to a scalar as opposed to a vector field has been made to avoid the
bulk of technicalities that comes with having to distinguish several different polarizations.
However, there is no conceptional difficulty that would impede the investigation of the full
Maxwell field†. In fact, for the very special case of a spherical cavity with varying radius
the radiation of real transverse electromagnetic photons has already been studied by the
same approach as presented here [8].

For simplicity, we presently consider only a semi-infinite dielectric half-space, i.e. a
dielectric body that has just a single interface with empty space. Of course, this is in a
strict sense a pathological situation, but it nevertheless captures all essential physics of the
effects we wish to consider. Calculations for finitely extended dielectric bodies, which
have at least two interfaces, would be considerably more complicated because the normal
modes of the field would then have to include multiple reflections and refractions, and in a
formalism of canonical quantization this leads to severe difficulties since the completeness
of the mode functions requires infinitely many reflections and refractions to be taken into
account.

The complex scalar fieldφ(r, t) that describes our field obeys the wave equation

∇2φ(r, t)− ε(r) ∂
2

∂t2
φ(r, t) = 0 (1.1)

whereε(r) denotes the position-dependent dielectric response function. We use the word
‘dielectric’ in loose analogy to the Maxwell field; one can think of the derivatives−(∂φ/∂t)
and∇φ as loosely analogous to the MaxwellE andB fields. The physical requirement on
the fieldφ to be finite everywhere, implies thatφ itself and its first-order spatial derivatives
must be continuous everywhere. Thus the fieldφ is subjected to the continuity conditions

φ and
∂φ

∂xi
continuous fori = 1, 2, . . . , d. (1.2)

We define the dielectric half-space to consist of a non-absorbing, non-magnetic, and
non-dispersive polarizable medium, which can be modelled through a real-valued space-
dependent dielectric response function. This description is nothing more than a macroscopic
characterization of the medium at any given point in space through its (uniform) response
to an externally applied field. Within this model the medium itself is assumed to be strictly

† In fact, the transverse electric (TE) and transverse magnetic (TM) modes of the electromagnetic field behave
essentially just like two decoupled scalar fields if, like in this paper, only motions normal to the interface of the
dielectric are considered. In this case the translation invariance and complete isotropy of the system parallel to
the surface prevent the creation of photon pairs with mixed TE and TM polarizations from the vacuum because
of parity conservation. Mathematically this is easily appreciated from the vacuum-to-two-photon matrix elements
of the force (cf e.g. Barton [7]) which are the main ingredients in the photon pair production amplitude (3.5). An
explicit calculation of several aspects of TE and TM quantum radiation by a three-dimensional moving dielectric
half-space has been done by North [7].
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neutral and unpolarized. Any microscopic features or polarizations not induced by external
fields lie beyond the present approach. We also stress that our model treats the dielectric
medium as a perfectly rigid body. This is, of course, a very crude approximation to any
realistic physical media, but it nevertheless captures the essential physics of the effects we
wish to investigate (and that is why it has likewise been made by all previous workers in
the field). Quantum radiation from compressible dielectrics introduces a whole range of
new effects that are beyond this study and are considered elsewhere [10].

The semi-infinite dielectric half-space then corresponds to a discontinuous step in the
dielectric response function of the system space. We choose the spatial Cartesian coordinate
system defined by the orthonormal unit vectorse1, e2, . . . ,ed such that the normal vector
n of the surface of the medium coincides withe1. We definen to be pointing into the
medium. Thus the interface plane spanned bye2, . . . ,ed lies perpendicular to thex1-axis
with the medium extending in the positivex1-direction.

With these definitions in place, we can characterize the instantaneous spatial
configuration of the system by the time-dependentx1-coordinate of the position of the
interface which we will denote byξ(t). The spatial dielectric response function of the
system-space then reads

ε(r, t) = 2(ξ(t)− x1)+ n22(x1− ξ(t)) (1.3)

where n > 1 denotes the refractive index of the medium, and2 is the Heaviside step
function. According to what we said earlier,n is a constant both in time and in frequency;
it is a merely measure for the strength of the response of the medium to external fields.
We note in passing that the dielectric half-space described by the response function of
equation (1.3) is invariant under lateral translations, which will considerably simplify some
calculations of this work.

We restrict the present investigation to velocitiesβ(t) of the medium normal to its
interface; hence the velocityβ(t) of the interface is given by

β = (β, 0, . . . ,0) with β(t) = ∂

∂t
ξ(t). (1.4)

Throughout our calculation we assume that the velocity is non-relativistic, i.e. thatβ � c.
The description of the eigenmode functions of the field in the present formalism requires

a characterization of plane waves with respect to the interface of the dielectric half-space.
Since by definition this interface lies perpendicular to thex1-direction, we define the surface
componentk‖ of the wavevectork of a plane wave by

k‖ =
d∑
j=2

kjej . (1.5)

Then, except in the trivial case of normal incidence whenk‖ = 0, the normal vectorn of
the interface and the surface componentk‖ of a wavevectork are orthogonal and define a
two-dimensional plane of incidence of a plane wave.

If the plane of incidence of a plane wave is given, i.e. if the surface componentk‖ of its
wavevector is known, it is possible to characterize the plane wave by the angle of incidence
αk ∈ [0, π ] which represents the angle that is enclosed by its wavevectork and the normal
vectorn.

k cosαk = k · n with αk ∈ [0, π ]. (1.6)

We stress that, according to this definition,αk is not identical to the angle of incidence
which is known from usual textbook treatments. Being commonly defined as the deviation
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from normal incidence the standard angle of incidence is restricted to the interval [0, (π/2)]
and thus does not normally carry any information about from which side a plane wave
approaches the interface. It is therefore not suited for a characterization of the wavevector
k in the present context.

Throughout this paper partial derivatives with respect to spatial coordinates will be
abbreviated according to

∂

∂xj
φ ≡ φxj . (1.7)

CGS units are used everywhere in the paper; ¯h andc are set equal to 1 unless explicitly
indicated. All special functions are defined as in [11, 12].

2. The canonical theory of the field

A scalar field whose equation of motion is given by the wave equation (1.1) with time-
independentε(r) can be described by the Lagrangian density

L0 = 1
2(ε(r; ξ)φ̇2− (∇φ)2) (2.1)

where we have introduced the subscript 0 to label quantities that describe the system in the
rest-frame of the dielectric body. Correspondingly, the conjugate momentumπ of the field
φ and the HamiltonianH0 in the rest-frame of the dielectric are given by

π = εφ̇ (2.2)

and

H0 =
∫

dr
1

2

(
π2

ε(r; ξ) + (∇φ)
2

)
(2.3)

respectively.
If the dielectric moves then the dielectric response functionε in the wave equation (1.1)

becomes time-dependent as indicated in equation (1.3) and the above Lagrangian and
Hamiltonian no longer describe the system, i.e. their equations of motion no longer coincide
with the wave equation. The Lagrangian for a uniformly moving medium can be found
from considerations of Lorentz invariance. It turns out† that the Lagrangian density for a
moving dielectric is uniquely determined by the three basic requirements: (i) that it is a true
Lorentz scalar, (ii) that in the limitε = 1 it reduces to the Lagrangian densityL0(ε = 1)
for the fields in vacuum, and (iii) that in the limitβ = 0 it turns into the Lagrangian density
L0 for the fields in a stationary dielectric. In this way we find

L = 1
2{(ε − 1)(vµ∂µφ)

2+ (∂µφ)(∂µφ)} (2.4)

wherev is the(d + 1)-dimensional velocity vector in Minkowski space

v = 1√
1− β2

(1,β). (2.5)

The canonical formalism then yields the Hamiltonian

H = H0+1H (2.6)

1H = β · P = β ·
∫

dr
(1− ε)
ε

π(∇φ). (2.7)

† The method of finding the Lagrangian and the Hamiltonian for a dielectric in uniform motion has been discussed
in detail in appendix B of [6], in appendix A of [8], and in section 2.2 of [13].
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Here we have already carried out an expansion in powers ofβ and neglected any terms of
orderβ2 and higher. In other words,1H is a first-order perturbation. This is all we need
since we aim at first-order perturbation theory in the small parameterβ, which is wholly
adequate for this problem as all material motion is slow compared with the speed of light.

In the following we will use the above Hamiltonian irrespective of whether the motion
of the dielectric is uniform, even though this is what we have assumed in its derivation.
Hence we ignore all acceleration stresses, which is a viable approximation as long as the
body can be considered rigid [6].

Since the force exerted on the dielectric body by the field is an essential characteristic
of the radiation process, we proceed by introducing the expression for the forceF0 in the
rest-frame of the dielectric. This force can be determined either by calculating the force
acting on a charge distribution induced by the field inside the dielectric, or by taking the
time-derivative of the momentum flux of the field [6, 8, 13]. Taking the result from [13],
we quote thex1-component of the forceF0 which is given by a surface integral over the
interface of the half-space

F0 = (n2− 1)

2n2

∫
dx2 . . .

∫
dxd

{
φ2
x1
−

d∑
j=2

φ2
xj

}
(x1=ξ)

. (2.8)

Higher-order corrections for moving dielectrics are not needed in our first-order calculation.
In order to quantize the system we demand standard equal-time commutation relations

for the field operatorsφ and π and expand them into normal modes in terms of photon
annihilation and creation operators,ak(ξ) and a†k(ξ), so that the Hamiltonian (2.3) is
diagonalized toH0 =

∫
dkωk/2(aka

†
k + a†kak) by the expansion (see [14] for details);

we write

φ(r) =
∫

dk
1√

(2π)d2ωk
{ak(ξ)fk(r; ξ)+ a†k(ξ)f ∗k (r; ξ)} (2.9a)

π(r) = ε(r; ξ)
∫

dk
−iωk√
(2π)d2ωk

{ak(ξ)fk(r; ξ)− a†k(ξ)f ∗k (r; ξ)} (2.9b)

whereξ is arbitrary but fixed, and the mode functionsfk are solutions of the wave equation
(1.1) and obey the continuity conditions (1.2). Similarly to the approach of [15] we
decompose each individual mode into three plane wave components which correspond to
incoming, reflected, and transmitted waves and are characterized by the three wavevectors
kin, kre, andktr. The expressions for the mode functions are then uniquely determined by
the imposition of the continuity conditions (1.2); we find [13]:

f +k (r; ξ) = eik‖·r‖

{
eik1(x1−ξ) + Rke−ik1(x1−ξ) if x 6 ξ
Tkeiktr

1 (x1−ξ) if x > ξ

f −k (r; ξ) =
eik‖·r‖

n2

{
Tkeiktr

1 (x1−ξ) if x 6 ξ
eik1(x1−ξ) + Rke−ik1(x1−ξ) if x > ξ

(2.10)

where the labelk is the wavevector of the incoming plane wave component, i.e.k ≡ kin,
and, as it has been introduced in the previous section,ξ denotes thex1 coordinate of the
location of the dielectric interface. The reflection and transmission coefficients are given by

Rk = k1− ktr
1

k1+ ktr
1

and Tk = 2k1

k1+ ktr
1

(2.11)

respectively.
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The superscripts+ and − of the eigenmode functions refer to the sign of thek1

component of the wavevectork. This notation discriminates between the eigenmodesf +k
that have the incoming and reflected wave components propagating in vacuum and the
transmitted wave component propagating in the medium, and thosef −k where the opposite
holds. Since total internal reflection occurs only forf −k , the reflection and refraction
processes are qualitatively very different in the two directions, so that the discrimination
(±) is crucial in the expressions to follow. For compactness we absorb the discrimination
of these two cases into the two auxiliary functionsεin

k andεtr
k , which are defined such that

εin
k takes the value of the dielectric response function in the half-space of the incoming and

reflected wave components of the eigenmodef ±k , andεtr
k takes the value in the half-space

of the transmitted wave component.
Expressed in terms of these auxiliary functions the relations between the frequencyωk

and the wavevectors of an eigenmode function are given by

ω2
k =

(k)2

εin
k

= (kre)2

εin
k

= (ktr)2

εtr
k

. (2.12)

These equations, which follow directly from the wave equation (1.1), in turn lead to the
relation between thek1 components of the incoming and transmitted wavevectorsk andktr

ktr
1 =

k1

| cosαk|

√
εtr
k

εin
k

− sin2 αk (2.13)

whereαk is the angle of incidence which was introduced in equation (1.6). This expression
shows that for eigenmodes with angles of incidence that fulfil sin2 αk > εtr

k/ε
in
k , ktr

1 becomes
purely imaginary. Since this can happen only ifεtr

k/ε
in
k < 1, evanescent wave components

can occur only for incident waves which approach the interface from the inside of the
medium or, equivalently, modes that haveαk ∈ [(π/2), π ]. Accordingly, we define the
critical angle by

sin2 αc = 1

n2
with αc ∈ [(π/2), π ] (2.14)

so that the interval of anglesαk that correspond to modes with complex-valuedktr vectors
is given by [(π/2), αc]. Note that, as was mentioned before,αc is not identical to the critical
angle of incidence commonly defined in textbooks, which is restricted to [0, (π/2)]. By
further introducing the auxiliary complex functionC of the angleα

C(α) = 1

| cosα|



√
n2− sin2 α for α ∈ [0, (π/2)]

i

√
sin2 α − 1

n2
for α ∈ [(π/2), αc]√

1

n2
− sin2 α for α ∈ [αc, π ]

(2.15)

which is either real or purely imaginary, we can rewrite equation (2.13) in the compact
form

ktr
1 = k1C(αk). (2.16)

We have definedC such that the wave described byktr travels either in the samex1-direction
as the incoming wave described byk or is exponentially decaying into the vacuum.
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It can further be shown (cf [13, 15, 16]) that for each arbitrary but fixed value ofξ the
set of eigenmode functionsfk defined by (2.10) fulfils the relations of orthonormality and
completeness given by∫

dr ε(r; ξ)fk(r; ξ)f ∗k′(r; ξ) = (2π)dδ(k − k′) (2.17)

and ∫
dk
√
ε(r; ξ)fk(r; ξ)

√
ε(r′; ξ)f ∗k (r′; ξ) = (2π)dδ(r − r′) (2.18)

respectively. These relations are essential for proving that the mode expansions (2.9a, b)
diagonalize the HamiltonianH0 (2.3) and translate the field commutators into photon
commutators.

We emphasize that the eigenmode functionsfk diagonalize only the HamiltonianH0

for the dielectric at rest and not the full HamiltonianH0 + 1H that describes a moving
dielectric. For our purposes of first-order perturbation theory this is sufficient. Beyond
this approximation one faces severe difficulties even when attempting to diagonalize the
complete HamiltonianH0 +1H in the seemingly simple case of constant velocities. This
is because reflection from a moving interface causes the frequency of the reflected wave
component to be Doppler shifted relative to the incoming and transmitted components,
so that eigenmode functions, which have to be monochromatic because the frequency is
their eigenvalue, can no longer be constructed from the physical principle of reflection and
transmission. The diagonalization ofH0 + 1H for arbitrary velocitiesβ(t) is of course
even less feasible; it would correspond to an exact solution of the problem, which seems to
be unattainable for more than one-dimensional systems, as explained in the introduction.

3. Photon emission in first-order perturbation theory

The emission of photons due to the normal motion of the dielectric half-space is described
by the probability amplitudes of transitions of the photon field from its ground state into
higher photon states. These transition amplitudes are determined by the time-dependent
Schr̈odinger equation

i
∂

∂t
|ψ(t)〉 = [H0(ξ(t))+1H(ξ(t), β(t))]|ψ(t)〉 (3.1)

with the initial condition |ψ(t0)〉 = |0〉 that the field is in its ground state att = t0.
The solution of this equation is not immediately accessible by textbook methods. The
Hamiltonian1H cannot be treated as an ordinary perturbation in standard perturbation
theory because it as well as the unperturbed HamiltonianH0 depend on time through the
parametersξ andβ. Conversely, the method of adiabatic approximation cannot be applied
to the problem in a straightforward manner because only the eigenstates ofH0 are known
but not those of the total parameter-dependent HamiltonianH0+1H . However, it has been
shown in [8] that a perturbative solution of this equation can be found by combining these
two standard approximation methods. By applying this generalized adiabatic approximation
to the present system (cf [13]), we find that, to first-order inβ, the initial state evolves into
a superposition of the ground state|0; ξ〉 and two-photon states|kk′; ξ〉

|ψ(t)〉 = |0; ξ〉 + 1
2

∫
dk
∫

dk′ ck,k′e−i(ωk+ωk′ )(t−t0)|k,k′; ξ〉 (3.2)
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with the coefficients

ck,k′ =
{

1

ωk + ωk′ 〈k,k
′; ξ |∂H0

∂ξ
|0; ξ〉 − i〈k,k′; ξ |P |0; ξ〉

}∫ t

t0

dτ β(τ)ei(ωk+ωk′ )(τ−t0).

(3.3)

(P is the x1 component of the vectorP defined in equation (2.7).) Hence the transition
amplitudes are〈kk′|ψ(t)〉 = ck,k′ exp[−i(ωk+ωk′)(t−t0)]. We note that the matrix elements
inside the curly brackets in (3.3), which are readily identified as distinct contributions from
the adiabatic approximation and from standard time-dependent perturbation theory, are in
fact independent ofξ due to the translation invariance of the system, so that the time-
dependence of the coefficientsck,k′ enters only through the finite-interval Fourier transform
of the velocityβ(t). We introduce the abbreviation

Jωk,ωk′ ([β(t)], t, t0) =
∫ t

t0

dτ β(τ)ei(ωk+ωk′ )(τ−t0). (3.4)

By calculating the two matrix elements of equation (3.3), we are led to a striking
connection between the transition amplitudes of two-photon states and the expectation values
of the force operator; we find

ck,k′ = − 1

ωk + ωk′ 〈k,k
′; ξ |F0|0; ξ〉Jωk,ωk′ ([β(t)], t, t0). (3.5)

This relation, which was first found in [6], reveals the intrinsic interrelation between the
photon creation and the radiation pressure of the field. In fact, the imbalance of the
fluctuations of the radiation pressure on a non-uniformly moving dielectric body is the
underlying cause for the emission of photons.

Finally, we evaluate the matrix element ofF0 by using the field expansion
equation (2.9a) and the eigenmode functions equation (2.10); after some calculation we
obtain

ck,k′ = O(k,k′, n)Jωk,ωk′ ([β(t)], t, t0)δ(k‖ + k′‖) (3.6)

where we have defined the factor of angular distributionO(k,k′, n) by

O(k,k′, n) = (n2− 1)

4πn2

1

(ωk + ωk′)
√
ωkωk′εinε

′
in

T ∗k T
∗
k′ {ktr ∗

1 k′tr ∗1 − k‖ · k′‖}. (3.7)

This expression for the probability amplitudes, which is the central result of the present
section, governs the spectral distribution of the emitted two-photon states and provides the
means for calculating the radiated energy and the radiation-reaction force.

4. The two-photon spectrum and its angular distribution

The factorδ(k‖ + k′‖) in equation (3.6), which comes from the conservation of momentum
parallel to the surface, causes the two photons in each excited two-photon state|k,k′; ξ〉 to
be emitted with equal and opposite surface components of the momentum, i.e.k‖ = −k′‖.
This means that the planes of incidence of the two photons coincide. However, since their
surface componentsk‖ andk′‖ point into opposite directions, their corresponding angles of
incidenceα andα′ are defined as oppositely oriented rotations of the normal vectorn in
this plane (cf figure 1). These two angles of incidence are related through

k1 tanα = k′1 tanα′. (4.1)
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Figure 1. Angles of incidenceα andα′ of a two-photon state with photonsk andk′, drawn in
the plane of incidence.

Using this relation and recalling equation (2.16),ktr
1 = k1C(α), we rewrite the factor of

angular distribution in terms of the angles of incidence and find that its modulus square is
given by

|O(α, α′, n)|2 =
(
n2− 1

πn2

)2 |D(α, α′)|2√
εin
k ε

in
k′

sinα sinα′ cos2 α cos2 α′(
sinα√
εin
k′
+ sinα′√

εin
k

)2 . (4.2)

Here we have introduced the complex auxiliary function

D(α, α′) ≡ C
∗(α)C∗(α′)+ tanα tanα′

(1+ C∗(α))(1+ C∗(α′)) . (4.3)

Hence it becomes evident that the factor of angular distribution is really only a function
of the angular configuration of the two-photon state and of the refractive indexn of the
medium; neither the orientation of the plane of incidence nor the total energy of the photon
pair (ωk + ωk′) enter this expression. Therefore the expression in equation (3.6) in fact
represents a separation of the emission amplitude into a product of two functions of which
only the finite-interval Fourier transform of the velocity functionβ depends on the energy
(ωk + ωk′) of the two-photon state. In other words, the angular distribution of the emitted
photons is governed solely by the factor of angular distribution and is the same for all
energies(ωk + ωk′) of possible two-photon states.

In order to demonstrate the sensitive dependence of the angular distribution of the
emitted photons on the refractive indexn of the dielectric medium, we plot the modulus
square of the factor of angular distribution for three typical values ofn, n = 1.01, n = 1.4,
and n = 10; figures 2–4 show the corresponding surface and contour plots. Since we
describe a photon emission process, we have plotted the function in terms of ‘out’ states
while the mode functions of section 2 represented ‘in’ states which we chose there for their
intuitiveness. As the wave equation is invariant under time reversal, ‘in’ and ‘out’ states
are two completely equivalent sets of solutions; one emerges from the other by complex
conjugation. Note that in the ‘out’-state picture, where the excitation of a two-photon state
|k,k′〉 is interpreted as the emission of two photons in the direction of the wavevectorsk
andk′, the critical angle lies in the interval [0, (π/2)].

Concentrating first on the contour plot forn = 1.4 (figure 3), we can clearly
distinguish nine distinct regions in the plot which correspond to different combinations
of the two photons that constitute an excited two-photon state. For example, the region
[(π/2), π ]× [(π/2), π ] corresponds to two-photon states with both photons emitted into the
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(a)

(b)

Figure 2. Factor of angular distribution forn = 1.01.

(a)

(b)

Figure 3. Factor of angular distribution forn = 1.4.
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Figure 4. Factor of angular distribution forn = 10.
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vacuum, and the region [αc, (π/2)] × [αc, (π/2)] to states with both photons emitted into
the medium at an angle of incidence greater than the critical angle which means that they
have evanescent components outside the medium. This subregion will play in important
role in the next section for the investigation of the radiated energy in the limit of largen.

The surface plot shows that the angular spectrum forn = 1.4 is dominated by two peaks
that lie on the diagonal, i.e. that correspond to photon states for which both photons have
angles of incidence of the same magnitude. One of these peaks, referred to as the peak of
critical emission, is centred around angles that correspond to pairs of photons that are emitted
into the dielectric medium at the critical angle. The other peak, in the following referred to
as the peak of normal emission, corresponds to photon pairs with both photons emitted into
the vacuum at normal angle. Whereas this peak is not counterintuitive, the existence of the
peak of critical emission could by no means have been anticipated and is a genuinely new
feature of quantum radiation from imperfect reflectors. Because it is specific to evanescent
wave components it is obviously not retrievable in any one-dimensional calculations.

Turning now to the plots forn = 10 (figure 4), we find that the peak of critical emission
is no longer visible. The spectrum is now entirely dominated by the peak of normal emission,
and the effect calculated is one order of magnitude greater than in the case ofn = 1.4. This
indicates that for high indices of refraction most photons are emitted into the vacuum. In
fact, one can show by analytic calculation that the height of the peak of normal emission
approaches(2π)−2 in the perfect-reflector limit and that the ratio between photons emitted
normally into the medium and those emitted normally into the vacuum falls asn−4 for large
values ofn. This result agrees with the calculations of [6] for a one-dimensional half-space,
and this is what we expect to happen for largen, because the dielectric interface is then
almost perfectly reflecting and the propagation of photons inside the medium is strongly
suppressed, so that all photons should be radiated into the vacuum.

Looking at the plots forn = 1.01 (figure 2), i.e. the case of a very dilute medium,
we find that the overall effect has become very small. Of course, any other observation in
this limit would be very disconcerting since all quantum radiation must vanish completely
for n → 1 where the medium becomes transparent. Interestingly, we find that the peak
of critical emission remains a dominant feature of the spectrum even for a very dilute
medium. A brief calculation reveals that the relative height of this peak in comparison with
that of normal emission tends towards its maximum value of 16 in the vacuum limit of
n → 1. Hence this peak is an intrinsic property of the system which is present however
closen > 1 might be to unity. It cannot be obtained by other approximation methods for
dilute media that do not incorporate evanescent wave components, in particular not by the
Born approximation.

5. Radiated energy and radiation-reaction force

5.1. Generalities

The probability of having excited a two-photon state|k,k′; ξ〉 by time t is given by
|ck,k′(t)|2, so that the total energyEtotal(t) that is radiated into the photon field during
the time interval [t0, t ] reads

Etotal(t) = 1
2

∫
dk
∫

dk′ (ωk + ωk′)|ck,k′(t)|2 (5.1)

where the factor12 prevents double counting of identical photon states in the integration
over all k andk′. In other words, by total radiated energy we mean the combined energy
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of all excitations of the field that are on average induced by the motion of the dielectric
between the timest0 and t . The total radiation-reaction forceFtotal(t) is defined simply as
the expectation value of the force operatorF0, i.e.

Ftotal(t) = 〈ψ(t)|F0|ψ(t)〉. (5.2)

BecauseEtotal(t) as well asFtotal(t), scale with the size of the(d − 1)-dimensional surface
areaS = L(d−1) of the dielectric interface, both of them need to be normalized with respect
to the unit area of this surface. Hence we introduce the normalized radiated energyE(t)
and the normalized radiation-reaction forceF(t) by

E(t) = Etotal(t)

L(d−1)
and F(t) = Ftotal(t)

L(d−1)
. (5.3)

Using the identity

2πδ(0) =
∫ ∞
−∞

dx {e−ixk}k=0 =
∫ ∞
−∞

dx = L (5.4)

whereL is the (infinite) size of our quantization box, we then find for the radiated energy
and the radiation-reaction force to first order inβ

E(t) = 1

2

∫
dk
∫

dk′ |Jωk,ωk′ (t)|2
(ωk + ωk′)
(2π)(d−1)

|O(k,k′, n)|2δ(k‖ + k′‖) (5.5)

F(t) = −1

2

∫
dk
∫

dk′ 2Re{Jωk,ωk′ (t)e−i(ωk+ωk′ )(t−t0)} (ωk + ωk′)
(2π)(d−1)

× |O(k,k′, n)|2δ(k‖ + k′‖). (5.6)

In order to derive the second of these equations, we have neglected the zeroth-order
contribution〈0; ξ |F0|0; ξ〉 to the matrix element〈ψ(t)|F0|ψ(t)〉, because it would cancel
with the corresponding contribution from the opposite interface for any realistic body. This
is in fact the only occasion where consistency requires a correction by hand to the model
of a semi-infinite half-space. Equations (5.5) and (5.6) entail the important relation

E(t) = −
∫ t

t0

dτ β(τ)F(τ ) (5.7)

which shows that the energy radiated into the field equals the negative work done on the
dielectric body by the forceF(t). This means that the radiation-reaction forceF(t) is
a dissipative force which acts as ‘friction’ on the moving dielectric body; thus the body
dissipates part of its kinetic energy into the photon field.

By change of variables we transform thek-space integrals of equations (5.5) and (5.6)
into independent integrals over the two angles of incidenceα andα′ and over the energy
u = ωk + ωk′ of the two-photon states. Next we define the emissivity factor

R(n, d) = π(d−1)/2

(2π)(d−1)0( d−1
2 )

(
n2− 1

πn2

)2

×
∫ π

0
dα
∫ π

0
dα′
|D(α, α′)|2√

εin
k ε

in
k′

sind α sind α′ cos2 α cos2 α′(
sinα√
εin
k′
+ sinα′√

εin
k

)(d+3)
(5.8)

where0 is the standard Gamma function andD(α, α′) is given in equation (4.3). This
abbreviation enables us to rewrite equations (5.5) and (5.6) as

E(t) = R(n, d)
∫ ∞

0
du u(d+1)|Ju(t)|2 (5.9)
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F(t) = −R(n, d)
∫ ∞

0
du u(d+1)2Re{Ju(t)e−iu(t−t0)} (5.10)

which are the central equations of this section; they show explicitly that the integration over
all possible two-photon states completely separates into the integration over the angular
configurations in the emissivity factorR(n, d) and the integration over the energy of the
photon pairs.

5.2. The emissivity factorR(n, d)

Since we have not been able to do the integrations overα and α′ analytically, we have
calculatedR(n, d) numerically. We have used a 10-point Gauss–Legendre integration with
an accuracy greater than the resolution of the plots. Figure 5 shows the emissivity factor
R(n, d) plotted as function of the refractive indexn for d = 2, d = 3, and d = 4.
Since algebraically the value ofd is not restricted to integers, we can plot this function for
continuousd, which is instructive for gaining an overall impression of its behaviour; the
corresponding surface plot overn and 26 d 6 4 is shown in figure 6. Figure 5 shows that
the emissivity factor diverges in the perfect-reflector limitn→∞ for d = 4, which is an
interesting and unexpected result of our calculation. By examining the contributions from
the various subintegrals overα andα′ that correspond to the nine regions of qualitatively
different photon pairs familiar from figure 3, we find that this divergence stems from the
contribution of the integral over the regionα, α′ ∈ [(π/2), αc]× [(π/2), αc], i.e. from pairs
of totally internally reflected photons. Since limn→∞ αc = π , this subintegral comprises all
radiation emitted into the medium in the perfect reflector limitn→∞. A lengthy analysis
of the asymptotic behaviour of this subintegral, which involves a change of variables for
making the integration limits independent ofn, reveals that this contribution toR(n, d)
behaves asn(d−3) in the perfect-reflector limit; hence it diverges ford > 3 and asymptotically
vanishes ford < 3. The reason for the divergence ind > 3 is that the phase space for totally
internally reflected modes grows exponentially withd but the damping of the emission into
these modes in the limitn → ∞ is independent ofd. The cased = 3 is special in that
these two effects balance and the amount of radiation going into the medium approaches a
constant in the perfect-reflector limit. This places the result by Barton and North [9], who
have have found the same for strictly harmonic motions in three dimensions, into a more
general context. In particular, we can certify that this behaviour is independent of the type
of motion described by the half-space.

We stress that in our calculation the dependence of the emissivityR(n, d) of the system
on the dimension and on the refractive index is not affected by the particular trajectory that
the half-space follows; in other words, the above results are independent of the velocity
β(t). We also point out that the divergence of the emissivity factor, and hence of the
radiated energy, ford > 3 makes the physical motivation of more than three-dimensional
models of moving perfect mirrors highly questionable.

5.3. Radiation-reaction force and spatial dimension

In the following we wish to explore how the radiation-reaction forceF(t) depends on the
spatial dimensiond. The key idea in this analysis, which we adopt from [6], is to convert
the factoru(d+1) in the integrand of equation (5.10) into a time-derivative of the exponential
through the relation

u(d+1)e±iuτ = (∓i)(d+1)

(
∂

∂τ

)(d+1)

e±iuτ . (5.11)
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Figure 5. Emissivity factor ford = 2, d = 3 andd = 4.
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Figure 6. Surface plot of the emissivity factor for continuousd.

In order to avoid mathematically ill-defined expressions, we introduce a cut-off factor
exp(−γ u) into the energy integral of equation (5.10). This cut-off is a mathematical
regularization device devoid of all physical meaning, and we intend to remove it by taking
the no-cut-off limit γ → 0 at the end of the calculation when all measurable physical
quantities have to emerge cut-off independent. In this limit, all terms vanishing withγ will
be discarded while those which remain finite or diverge will be kept.

Thus, using relation (5.11) we find that the radiation-reaction force can be written as

F(t) = −R(n, d)
∫ t−t0

0
dτ β(t − τ)

(
i
∂

∂τ

)(d+1) {
γ ((−1)(d+1) + 1)+ iτ((−1)(d+1) − 1)

γ 2+ τ 2

}
.

(5.12)

This equation demonstrates the effect of the spatial dimensiond on the expression for the
radiation-reaction force. For odd spatial dimensions the term in curly brackets reduces to
the well known Lorentzian

Lγ (τ ) = γ

γ 2+ τ 2
(5.13)

but for even spatial dimensions it reads

Aγ (τ ) = τ

γ 2+ τ 2
. (5.14)
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In order to show the consequences of this difference, we evaluate the integral ford = 3 and
d = 2 by integration by parts. For this we assume that the velocityβ(t) of the dielectric
body together with all its time derivatives vanishes fort 6 t0. This is to say that the motion
starts from rest, which is consistent with the assumptions made in the perturbative approach
of the previous section, where the initial state of the field prior to perturbation was defined
to be the ground state of the unperturbed HamiltonianH0.

Beginning withd = 3, we find that the force in the no-cut-off limit is given by

F3(t) = R(n, 3)

{
4

γ 3

∂

∂t
β(t)− 2

γ

∂3

∂t3
β(t)− π ∂

4

∂t4
β(t)

}
. (5.15)

The divergences(1/γ ) and (1/γ 3) appearing in this expression have no physical
consequences, because, just as in standard quantum electrodynamics, they can be absorbed
into the renormalization of system parameters. In quantum electrodynamics, the coupling of
the photon to the electron field leads to a renormalization of the electron mass. Analogously,
in our model the coupling of the scalar photon field to the dielectric body through
the continuity conditions gives rise to the need for renormalization as well. The term
proportional to(1/γ 3) simply renormalizes the inertial massm of the body by

1m = 4R(n, 3)

γ 3
. (5.16)

We think that the coefficients of higher-order derivatives of the velocity can likewise
be renormalized as long as the time-reversal properties of Newton’s equation of motion are
not affected by the renormalization. To this end we rewrite Newton’s second law as

F = m1
∂β

∂t
+m3

∂3β

∂t3
+ · · · . (5.17)

In Newtonian mechanicsm1 ≡ m is the usual inertial mass, andm3 and all higher coefficients
in this equation are zero. From time-reversal symmetry it is clear that the mechanical force
F cannot depend on any even time-derivatives of the velocityβ because these would give
rise to dissipation and hence irreversibility of the equations of motion. However, as far as we
know there is no fundamental law that forbids the force to depend on odd time-derivatives
higher than first. Although experiments show that the coefficientm3 is zero within the
presently attainable accuracy of measurement, we see no reason why the bare ‘third-order
mass’mbare

3 could not have some other value; this would imply that the observablem3

is adjusted to zero only by renormalization. Thus, in the same way as the (infinite) bare
mass is renormalized to the standard observable massm1 ≡ m, we propose that the term
proportional to(1/γ ) leads to a renormalization of the bare ‘third-order mass’mbare

3 by

1m3 = −2R(n, 3)

γ
(5.18)

to m3 ≈ 0 for all that has been measured.
Hence, the renormalized radiation-reaction force on a three-dimensional half-space is

proportional to the fourth time-derivative of the velocity. It is not difficult to see that this
result can readily be generalized to higher odd dimensionsd. After renormalization of
higher-order masses one obtains that the radiation-reaction force in oddd dimensions is
proportional to the(d + 1)th derivative of the velocity,

F (ren)
odd (t) = −πR(n, 3)

∂(d+1)

∂t (d+1)
β(t). (5.19)
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Using relation (5.7), which connects the radiated energy to the radiation-reaction force,
the above results for the force also entail expressions for the radiated energy. In three
dimensions we find that for motions from rest to rest

E3 = πR(n, 3)
∫ t

t0

dτ β̈2(τ ) (5.20)

which in the limit n→∞ agrees with the result of [17]. In arbitrary odd dimensions the
radiated energy for trajectories from rest to rest reads

Eodd= πR(n, d)
∫ tu

t0

dτ

(
∂(d+1)/2

∂τ (d+1)/2
β(τ)

)2

. (5.21)

Turning now to even dimensions, we record the force in two dimensions

F2(t) = 2R(n, 2)

{
β̇(t)

γ 2
−
∫ t−t0

0
dτ

...

β (t − τ) τ

τ 2+ γ 2

}
. (5.22)

The first term in the curly brackets is again just a mass renormalization term, yet the integral
in the second does not give a simple expression for the dissipative force because it does
not reduce to an instantaneous function oft in the no-cut-off limit; in general it is not even
convergent ifγ is taken to zero. A similar behaviour is found in arbitrary even dimensions.
It is clear that the simple relation (5.19) cannot hold in even dimensions because then the
force it gives is odd under time-reversal and can therefore not be dissipative.

In summary, we have found that in odd spatial dimensions the dissipative radiation-
reaction force responds instantaneously to the motion of the dielectric half-space and can
be expressed as an even time-derivative of the velocity. In contrast, the behaviour of this
dissipative force in even dimensions is much more complex; the dissipative response of the
system is sensitive to the entire history of the motion, i.e. the force is non-Markovian. The
renormalization of mass terms is inevitable in all dimensions.

We ascribe the convergence problems that arise in the no-cut-off limit for the dissipative
force in even dimensions to the idealization of non-dispersive dielectrics made in the present
model; in a physically more realistic model the high-frequency transparency of any real
material would naturally introduce a cut-off at some finite frequency.

5.4. Radiated energy for trial velocity functions

For the illustration of the dependence of the photon emission on the dynamics of the half-
space, we calculate the radiated energy for three specific trial functions of the velocityβ(t).
We consider a Lorentzian peakβlor(t), a harmonic oscillationβhar(t), and a hyperbolic
tangentβtan(t). To facilitate analytic derivations, we let the time interval of the process
considered be infinite, i.e. we sett0 = −∞ and t = ∞. Thus equation (5.9), which gives
the radiated energy in arbitrary spatial dimensionsd, becomes

E = R(n, d)
∫ ∞

0
du u(d+1)

∣∣∣∣ ∫ ∞−∞ dτ β(τ)eiuτ

∣∣∣∣2. (5.23)

Starting with the Lorentzian

βlor(t) = 1

π

1
�

t2+ 1
�2

(5.24)
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we calculate

|Ju([βlor])|2 = 1

�2π2

∣∣∣∣ ∫ ∞−∞ dτ
cos(uτ)

t2+ 1
�

∣∣∣∣2
= 1

�2π2
|�πe−u/�|2 = e−2u/� (5.25)

and find that the radiated energy is given by

Elor = R(n, d)
∫ ∞

0
du u(d+1)e−2u/�

= R(n, d)(d + 1)!

(
�

2

)(d+2)

. (5.26)

Fourier transformation of a harmonic motion of amplitudebhar and frequency�,
βhar(t) = bharsin(�t), yields

|Ju([βhar])|2 = π2b2
har|δ(�− u)|2 (5.27)

hence the amount of energy radiated per unit time by a harmonically oscillatingd-
dimensional half-space is

Ehar

T
=
(π

2

)
R(n, d)b2

har�
(d+1). (5.28)

This equation permits a direct comparison of our results with those by Barton and North
[9] who calculate this energy ford = 3 and write down its value in the limitn→∞; we
find complete agreement, even in the numerical prefactors. Hence for the specific case of
harmonic motion our approximation method is equivalent to Fermi’s golden rule employed
in [9].

Finally, for

βtan(t) = bt tanh(�t) (5.29)

we have

|Ju([βtan])|2 = b2
t π

2

�2

1

sinh2( uπ2�)
(5.30)

which gives,

Etan= 4b2
tanR(n, d)0(d + 2)ζ(d + 1)

(
�

π

)d
(5.31)

where0 is the Gamma function andζ the Riemann zeta function. Evaluating these special
functions in the cased = 3, we obtain the energy radiated by a three-dimensional half-space
moving with the velocityβtan(t)

Etan,3 = 16
15b

2
tanR(n, 3)π�3. (5.32)

Finally, we would like to emphasize that the photon emission depends on the velocity
only through the Fourier transform ofβ(t), i.e. on the frequency spectrum of the motion;
in other words, general statements about the dependence of the effect on any instantaneous
values of velocity—for example, its maximum—are not meaningful by themselves, but have
to be made for a specific family of functions; in particular, the radiated energy is not directly
connected to the maximum velocity of the half-space. This is very clearly illustrated by
the explicit calculations performed above for the trial functionsβhar andβtan; although the
velocity is bounded in each case, the amount of radiated energy can, in theory, be made
arbitrarily large by increasing�.
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6. Summary

In this paper we have calculated the characteristics of dissipative radiation emitted by a non-
relativistically moving dielectric half-space of arbitrary refractive indexn > 1 in arbitrary
integer spatial dimensionsd > 1.

The angular distribution of the radiated photons has been calculated and has been shown
to be highly sensitive to the refractive index. We have discovered a peak of critical emission
which corresponds to photons that are radiated into the dielectric medium at the critical angle
of total internal reflection. This peak is an important feature of the spectrum for refractive
indicesn . 3, which applies to most realistic refractive media in the visible spectrum.
Since it is closely related to the presence of total internal reflection and evanescent wave
components, this property of the spectral distribution was found neither in one-dimensional
models of quantized fields with moving boundary or continuity conditions, e.g. not in [6],
nor in any other higher-dimensional calculations for perfectly reflecting moving mirrors, e.g.
not in [18], because these models rule out evanescent wave components by construction.

Furthermore, we have calculated the total radiated energy and the radiation-reaction
force on the dielectric body per unit surface area of the dielectric interface. We have
explored the fundamental difference between systems of odd and even spatial dimensions
in connection with the required time-reversal symmetry of dissipative forces.

In particular, we have shown that while in odd-dimensional systems the renormalized
radiation-reaction force is proportional to the instantaneous value of the even(d + 1)th
time-derivative of the velocity, in even spatial dimensions the force is non-Markovian, i.e.
the system remains sensitive to its history.

For three test trajectories of the dielectric body the amount of energy radiated per unit
surface area has been calculated in arbitrary dimensions. Reduced to three dimensions our
results agree with previous calculations [17, 9].

The analytical examination of the emissivity factorR(n, d) has shown that the amount
of dissipated energy of a non-uniformly accelerated dielectric half-space, diverges in the
perfect-reflector limitn→∞ for all spatial dimensions greater than three. Hence ford > 3
the physical interpretation of models of moving perfect mirrors is questionable.
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